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Sibyl: Simple yet Effective Agent Framework for Complex

Real-world Reasoning

WX HAk: https://arxiv. org/abs/2407. 10718
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Figure 1: The overall pipeline of Siby! framework.
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Figure I: Cyclic Workflow Diagram of the PEER Framework. The user's query, "Why did Buffett sell BYD stock?”, prompts the
"Plan" agent to generate four relevant sub-questions, The "Execute™ agent then collects information, including BYD's financial
data and expert opinions. The "Express" agent synthesizes a comprehensive answer, which the "Review" agent evaluates and, if
necessary, suggests modifications.

T2 U AL, GPT—4 38 34 3 B9 32T A e K 3 78 A R (RAG)
RARAEERE N, ERHCEIEEE. KAFMKERLN=2R
B, BURTREEFEEARNHALE, TEEELNFRELER
ZTHEREFNEN, TURAR, EELA,

Jy Rz ax Bk ik, B4R T PEER (MUK, 34T, Rk, #E)
SEERER., ZERBLEGRENFAFHE. SR EERE.
SeWEERAURTENERITE, RAUHAELT Y IREF.

ERERABIERANTE, FLLLEN GPT-4 LK
At E FIA, DHERAR, RS2 HRETHE S, AL
MAELKEFRAF AR, TXT —ETLER, B EZAEANE
B

RAREHRT —EREZERIEH, AT E% 2 Tk B R N
A2 BEERT, IFEHA R AR R, 457 &4 E A
BB AR R, %77 %3R5 T GPT-4 MEREM 95. 0%, [FlA 4
BAE S TS ARRAGRY T ERIH €.

3. BMW Agents—ER £ H AWM EZAE S BALNESR



BMW Agents —— A Framework For Task Automation Through

Multi-Agent Collaboration

W H A https://arxiv. org/abs/2406. 20041
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Figure 1: Generic agent workflow starting with user input and ending with providing workflow output.
Agent Workflow highlights major components and levels of the workflow with (1) Planning, (2)
Execution, and (3) Verification done by dedicated agents.
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4. Trace ZF M AutoDiff— M4 HE TER W E XK1k

Trace 1is the New AutoDiff — Unlocking Efficient

Optimization of Computational Workflows
WX AE: https://arxiv. org/abs/2406. 16218

Ti B #odk: https://microsoft. github. io/Trace
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Figure 1: Learning Example in Battleship: An agent playing Battleship must intelligently place a shot on the
board. Trace automatically optimizes heterogeneous parameters (e.g. multiple codes) to implement the agent’s
policy. The reason() parameter contains an enumeration heuristic after 2 optimization iterations, and later
updates to a balanced explore-exploit strategy. Means and standard errors are computed over 10 random seeds.
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RCAgent: Cloud Root Cause Analysis by Autonomous Agents
with Tool-Augmented Large Language Models

https://arxiv. org/abs/2310. 16340
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Fig. 2: Overview of the different action cycles from ReAct (left) and RCAgent (right). Both action cycles involve generating
verbal thoughts, taking actions, and receiving observation from the environment, all of which are recorded in the prompt
alongside the initial memory to boost reasoning. Besides, our RCAgent includes the key-value store for observation retrieval,
allowing the agent to operate on text data much larger than the context length constraint. After parsing the action, our RCAgent
executes the action directly or invokes an expert agent, depending on the type of tool.
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AgileCoder: Dynamic Collaborative Agents for Software

Development based on Agile Methodology

WL H A https://arxiv. org/abs/2406. 11912



Figure 1: An overview of AGILECODER
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Parrot: Efficient Serving of LLM-based Applications with

Semantic Variable

WX AE: https://arxiv. org/abs/2405. 19888
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Figure 3: The end-to-end latency breakdown of current LLM services. The source of the overhead comes from network and
queuing due to chatty interaction between LLM application and LLM services, which is eliminated in our system Parrot.
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Automating the Enterprise with Foundation Models
W AE: https://arxiv. org/abs/2405. 03710

Ti B #oik: https://github. com/HazyResearch/eclair—agents

Michael Wornow™, Avanika Narayan®, Krista Opsahl-Ong, Quinn Mcintyre, Nigam H, Shah, and Christopher Ré
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Figure 1: Differences between ECLAIR and traditional RPA. ECLAIR uses FMs to learn expertise via video demonstrations (left),
navigate GUIs given written documentation (center), and audit completed workflows (right).
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4, S-Agents: FFHIFFEF W EHLE A

S—Agents: Self-organizing Agents in Open—ended

Environments

https://arxiv. org/abs/2402. 04578

(a) Hourglass Pivot (c¢) Hierarchical planning
Fig. 3. An il ion of h lass agent archi e, (a) Ho umlan agent framework: The u upper segment; Processes inputs like perception and
the previous plan, These inputs undergo a series of o tpcral ons, converging towards a unified and consistent objective (the bottleneck of the hourglass),
The lower segment: Involves the decomposition of an objective lhmugh hicrarchical planning. (b) Progress monitor: Utilizes LLM to assess the current

progress status of the ongoing task. (¢) Hierarchical planning: Comprises two stages: Task planner and action planner.
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A Human—Computer Collaborative Tool for Training a Single

Large Language Model Agent into a Network through Few Examples

WX HAE: https://arxiv. org/abs/2404. 15974
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Figure 1: How EasyLLAN trains a task-oriented LLLM agent network (LAN) from a single LLM agent. (1) EasyLAN
auto-generates an initial LAN that only contains a single LLM agent based on the task (e.g., translating French to
English). A significant gap exists between the capabilities of the initial LAN and the task requirements. (2) A training
example consists of an input and a ground truth. For a given training example, EasyLAN identifies discrepancies
between the LAN's output and the expected output. For instance, when the input is a line of French poetry, "Vienne la
nuit sonne I'heure, les jours s’en vont je demeure”, the LAN fails to translate the text accurately while preserving the
original rhyming scheme. (3) EasyLAN identifies the cause of the discrepancies and updates the LAN with respect
to both the network architecture (e.g., splitting Translator into Literal Translator and Rhyming Polisher) and agent
contents (e.g., adjusting the functionality of an agent). (n) EasyLAN iterates over a small set of training examples and
constructs a satisfactory LAN,
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PromptRPA: Generating Robotic Process Automation on

Smartphones from Textual Prompts

WX AE: https://arxiv. org/abs/2404. 02475
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Fig. 1. The workflow of PromptRPA. Blue arrows guide the generation process from textual prompts to RPA,
while green arrows indicate the knowledge accumulation that occurs through user interactions, thereby
enhancing the future performance of the agents.
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ProAgent: From Robotic Process Automation to Agentic

Process Automation
WX AE: https://arxiv. org/abs/2311. 10751

Ti H #dk: https://github. com/OpenBMB/ProAgent
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Figure 1: The comparison between Robotic Process Automation and Agentic Process Automation.
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WorkArenat++: Towards  Compositional  Planning and

Reasoning—based Common Knowledge Work Tasks
WAk https://arxiv. org/abs/2407. 05291
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Figure 1: Example WorkArena++ task: Restock low inventory items. Here, the agent acts as an IT worker tasked
with restocking items that are below some threshold in stock: @ As is common, it receives instructions via a
ticket assigned to them in the system; (2) it must then read the dashboard to extract all items whose stock count is
low; @ reorder the items from the service catalog to match a minimum stock quantity, and @ close the ticket
assigned to them once the task is completed.

ABEFEE (LI FEEG A KT ERE N T & % K E, &L
REET LIMB B E8 AR EHNE . RE R 8 LM EIH HRE A
P a8 B AT ALK Fe e e v 7, (B A1 B A SRR 7 TE Y SE IR AL
FIBRE RN KA ZAESWITIFE R, B FAT a8 HY R 3
FTRE, HERBTRILZNTH,

BT HRX—FREE, BIREST Vorkhrenatt, &2 — 4l
FHEENREN, B4 682 M4, BESRIEXHEHTHE
B TR . WorkArenat+il B 4 2 4 T W45 1 4 % fe k2 %1 . 19
Bk, B/ EARE. BEREUR L TXEMETEHNEA.

WL RV LM, AR EEHEAR (VLD URAEXTIEHW
SRR, WX B R Y R R AR R E N A X B F T E e E T
B &

BT HRIIR, XA GET — LA, BN A RBT AL
FHEEEWINE/ AR, X EH TR FHAIE S &
BRI RN T e R A o K A B I 2 kK R
B EE R



2. FlowBench: E#1 % W& T LLM 898 864K T1ER 5] S A X FxF
F AT H MR
FlowBench: Revisiting and Benchmarking Workflow—Guided

Planning for LLM-based Agent

WS H A https://arxiv. org/abs/2406. 14884

Benchmark Construction ~ Benchmark Evaluation
(a) Task Collection | Benchmark Schema Static Tum-level Evaluation
s Domair i ] e 0
cuwlmv Travol&Tran P 3 i
‘c' E EIESEEE » L= - -%-' |
el o ol b C L :

Esang Pecsonal ..'—:“:‘; °’°‘"“""my Lo m
T ﬁ“‘“‘* 166 6 6 6 b || "

Si

mwmmo-wm (<) Sossion Generation G
: &= j/ @
it — et —_ — —— = S Al
G - — “J — eap A= |- ::@—oé =5 \%—ﬂ:}
g S 3 (| = \ B <!
e boe UM Mutti-step
Keowledge  Human Toxt Other Oiverse  Humen us Qublity '-““ H““' o poa
| Sources  Annotator Format Format | | User Profite ' \ >,

Figure 2: Overview of FlowBench. Our benchmark schema is structured in a top-down multi-level hierarchy
(domain - role - scenario - knowledge). The benchmark construction process on the left contains three phases (a,b,c).
The evaluation framework on the right encapsulates static turn-level and simulated session-level assessment.
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Figure 1: The three components of WONDERBREAD. (1) We curate 2928 human demonstrations
across 598 web navigation tasks. Each demonstration includes an intent, a full screen recording, an
action trace, and a written guide (SOP) describing the steps taken in the demonstration. (2) We create
6 BPM tasks that measure a model’s ability to generate accurate documentation, assist in knowledge
transfer, and improve workflows. (3) We provide automated evaluation pipelines for all tasks.
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Prompt Programming Language (APPL) :
> il

Programming Language (program)
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Natural Language (prompt) «— & A\ 0D

User LLM

Figure 1: We introduce APPL, a prompt program-
ming language that integrates conventional pro-
grams and natural language prompts to provide a
unified interface for users to access computers and
LLMs together.APPL also facilitates users fusing
the strengths of computer programs and LLMs by
providing convenient conventions between them.
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Granite Code Models: A Family of Open Foundation Models for

Code Intelligence
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Towards Hierarchical Multi—-Agent Workflows for Zero—Shot

Prompt Optimization
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(d) HMAW (ours)

Figure 1: Examples comparing the generalization ability of existing methods and the proposed
one. (a) COT [!] uses a handcrafted prompt, which might not be suitable for all tasks. (b) APE
[7] fine-tunes the prompt on a specific dataset, and its generalization capability to other scenarios
is questionable. (¢) ExperPrompting [¢] includes few-shot examples in the system prompt to help
an LLM convert the user query to a format more suitable for LLM, but these examples might not
be able to cover all scenarios. (d) Our method adopts a hierarchical design in reformatting the user
query. Free from pre-defined few-shot examples, the interaction between the LLM hierarchy allows
for more generalizable yet more adaptive tuning of the prompt.
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Figure 2: The proposed autonomous workflow, involving an Al agent interacting with an MR application. The
Al agent comprises a core cerebral language agent, which interacts with a vision-language agent to interpret the
multimodal context into metadata, which can be utilized by the cerebral language agent iteratively. The MR
application interacts with Al agents by serving functions as external tools.
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The Case for Developing a Foundation Model

Planning—1like Tasks from Scratch
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Figure 1: Overview of developing an FM-based system -
e.g., an LLM-based chatbot.
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Figure 1: Evolution of Data and Capabilities
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Figure 1: CoA pports the Int tive Agency in Human-Al service co-creation with LLMs through: (1) "AIBound”: sets

Al's boundaries without sidelining humans, (2) "AISync™: showcases and aligns desired responses between creators and Al,
and (3) “PersonAi”: allows new knowledge discovery via AI-Al interactions. A typical user journey unfolds: Creators start
with "AIBound", define an Al, and feed domain knowledge. They test the Al and if errors arise, use “AlSync” for adjustments,
typically multiple times. Progress is marked by Al improvements. Then, with "PersonAi”, Al agents with different persona are
created. Creators then step back to reassess the Al's knowledge depth and to spot potential blindspots.
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