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自主无人系统的具身认知智能框架
孙长银 1,2，穆朝絮 2,3，柳文章 3,4，王晓 2,3,4*

摘要 自主无人系统是一类具有自主认知、运动规划、自主决策和推理能力的智能系统，其

目标是在有限甚至没有人工参与的情况下完成复杂开放动态场景中的通用任务。针对自主

无人系统在跨域协同任务上往往面临协同感知效率低、自组网通信可靠性差、资源调度流程

慢、任务分配易冲突等一系列问题，探讨了融合大模型和生成式人工智能技术，构建了“大模

型+自主无人系统+人工智能生成内容”为一体的自主无人系统“算-控-测”具身认知智能架

构，以推动自主无人系统具身认知智能应用落地。
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具身智能概念的起源可以追溯到诺伯特·维纳

（Norbert Wiener）于 1948年出版的《控制论：或关于

在动物和机器中控制和通信的科学》（Cybernetics:
Or Control and Communication in the Animal and
the Machine）。在这部著作中，维纳阐述了控制、反

馈、人机交互的核心思想，并提出“一个自动控制系

统必须根据周围环境的变化自行调整自己的运

动”[1]，强调了机器通过与环境的互动，产生并发展

行为智能（图 1）。维纳的思想是人们对机器如何

模仿生物适应环境行为进行早期探索的标志。这

种机器智能的发展不仅依赖于算法和计算能力的

进步，更依赖于对环境的感知以及对变化的环境进

行适应或应对的深入理解和实践。

行为智能一直是智能机器的研究目标，而人工

智能的最初定义便是“制造智能机器的科学与工

程”（the science and engineering of making intelli⁃
gent machines）[2]。其核心在于行为智能强调机器

不仅需要处理信息，还必须能与物理世界进行有效
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互动。1991年，麻省理工学院的 3位教授出版了

《具身心智：认知科学与人类经验》（The Embodied
Mind: Cognitive Science and Human Experience）一

书，标志着具身认知理论的正式提出，被认为是认

知科学的一次革命性范式转移[3]。具身认知理论认

为，那些在形态上可以很好地适应环境的智能体可

快速学习智能行为[4]，强调认知具有具身性、情境性

和生成性特点。具身性要求系统主体能够感知其

所处的物理环境并在其中行动，这不仅限于简单的

传感器数据处理，还包括对物理行为的控制和反馈

机制。例如，具身智能的机器人不仅能感知门把

手，还能理解如何使用它来开门。情境性则要求系

统主体必须能够理解并适应其操作环境的具体上

下文。这种理解超越单一任务执行的环境，还要求

其对环境变化能够动态适应。生成性强调的是系

统主体通过与环境的互动行为来不断生成新的数

据、知识和解决策略。这一特点是具身智能区别于

传统计算模型的关键，因为它不仅是在预设规则下

运行，更能够在遇到未知挑战时创造性地解决问

题。生成性能力的发展意味着智能系统可以从经

验中学习并改进其行为，进而更好地适应复杂且不

断变化的真实世界。具身性、情境性和生成性这 3
方面共同构成了具身认知智能的基础，使智能机器

从被动的信息处理工具转变为能够主动理解和影

响其环境的动态参与者[5]。

随着人工智能技术的飞速发展，多模态大模型

已成为机器获取知识、与网络和物理世界交互信息

的重要接口[6]。通过整合多源感知数据，如视觉、听

觉、触觉等，大模型可模拟人类的综合感知功能，为

机器提供更全面且综合的认知世界的能力。这种

对环境信息的“融会贯通”不仅增强了机器对世界

环境的感知维度和精度，还使得机器能够在接收和

处理信息时更加贴近人类的自然行为模式。此外，

多模态大模型能够基于开源社会媒体信息实时更

新机器人的内在知识库实现持续学习和进化[7]。这

种动态学习和更新机制赋予了机器人在面对新情

况和挑战时快速适应和响应的能力。例如，通过实

时接入交通信息和社会媒体数据，无人驾驶车辆可

以具备路网全局视角，即时调整其路线规划，避开

突发的交通拥堵和事故，确保行驶效率和安全。这

些多模态大模型的应用不仅限于信息的单向处理，

更重要的是它们可以使机器在遇到问题时展示出

类似人类的解决策略。机器可以通过记忆的方式

学习归纳如何从过去的经验中提取教训，并通过联

想法学习模拟如何在新的情境中创造性地应用这

些知识，从而有效地解决问题。这种能力的提升，

使机器能够自主地执行更复杂的任务，表现出更高

的智能和适应性。

自主无人系统作为信息技术的主要应用载体

和验证平台，近年来在人工智能、物联网、5G通信

等新一代信息技术的支撑下取得了突破式的进

展[8-10]。然而，由于系统庞大、设备异构且运行机理

复杂，自主无人系统在执行跨域协同任务时面临多

方面的挑战。首先，协同感知是基础，它要求不同

系统之间能够准确共享和解析环境数据。例如，在

复杂的救援行动中，地面机器人、无人机和其他传

感设备必须实时交换精确的地理和环境信息，以协

同进行搜索和救援。其次，通信效率是协同任务按

时执行的关键。通信延迟或错误可能导致整个操

作的失败，尤其是在对时间敏感或需要精确同步的

任务中。资源分配问题则涉及如何在多个任务和

系统间有效分配有限的计算资源、能源和时间。合

理的资源调配能够最大化整个系统的工作效率，避

免资源浪费，并确保关键任务的优先级。再次，冲

突消解是自主无人系统跨域协同任务的难点，尤其

图1 行为主义人工智能具身认知逻辑框架
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是在多个系统或算法可能有不同或相冲突目标时。

例如，多个自主无人系统可能同时需要同一资源或

在空间上有交叉的任务路径，如何设计算法以高效

地规避这些潜在冲突，是保证协同任务顺利进行的

关键。最后，协同决策能力是高效团队作业的核

心。这不仅需要每个单独的系统具备高效的决策

能力，更需要这些决策能够在群体中共享并得到协

调。有效的协同决策机制应确保所有系统在共同

的目标和策略指导下运作，即使在环境或内部状态

发生变化时也能保持决策的一致性和适应性。

为应对自主无人系统在跨域协同任务中面临

的上述挑战，融合多模态大模型构建具身认知智能

框架尤为重要。通过整合来自不同传感器的多模

态信息，如视觉、听觉和触觉数据，这一框架有望为

自主无人系统提供一个全面的环境感知和场景认

知视图。此外，通过打通并实时接入来自互联网和

其他可信源的数据，系统可以不断更新其内在知识

库，从而提高场景认知的准确性和任务分配的响应

速度[11]。自主无人系统具身认知智能框架的关键

在其支持多型异构设备在环的数字化环境实时生

成和交互式学习。这意味着系统不仅在数字场景

中接受训练，而且能够在实际操作中持续学习和适

应环境，根据新的数据和经验不断优化其行为模式

和决策策略[12]。例如，通过自主组合不同机器学习

算法，自主无人系统可以识别哪些协同策略在特定

任务中最有效，随后将这些策略应用到类似情况，

以提高整体操作效率。虚拟测试环境允许系统在

执行任务之前通过大量的预训练优化其策略以适

应复杂变化的环境条件和任务需求。该技术将有

效提升有限资源分配效率和冲突消解能力，使系统

能够在面对资源竞争或目标冲突时及时做出符合

系统整体目标的最优决策[13]。最后，具身认知智能

框架将强化自主无人系统的跨域协同能力，系统不

仅能够独立完成任务，还能够与其他有人/无人系

统协同工作，共享信息和决策，有效应对环境的不

确定性和任务的复杂性。通过嵌入多模态大模型

构建自主无人系统的具身认知智能框架，将使自主

无人系统能更好地面对跨域协同任务的挑战，实现

更高水平的自主性和适应性。

1 从具身智能到通用人工智能

具身智能的思想起源可以追溯到 20世纪中期

的行为主义人工智能研究，这一研究领域核心关注

点是机器如何通过与环境的直接交互来获得和发

展出智能。该研究初期受到了心理学家如布鲁纳

和斯金纳等人的行为主义理论的显著影响，其核心

思想认为学习主要是通过行动和反馈的结果来进

行，而非单纯的观察或指导[14]。这一时期的行为主

义人工智能研究强调“行为交互学习”的重要性，智

能体必须通过实际操作来学习，而不能仅通过观察

来获得技能[15]，即真正的智能来自对物理世界的动

态交互和持续的实践活动。在这种思想指导下，早

期的机器人学家和AI研究者试图开发出能够自主

探索其环境并通过试错方法学习的机器。其中最

具代表性的是斯坦福研究院Nils Nilsson等在 1966
—1972年研制的 Shakey自主式移动机器人[16]。在

该项目中，机器人需要通过多次尝试来学会寻找最

短路径，而这种能力是无法通过被动观看视频或模

仿其他行走者直接获得的。通过这种实践，机器人

不仅学习到如何完成特定任务，还能够在过程中发

展出解决新问题的策略，从而在更广泛的环境中有

效应用其学到的技能。

与“行为主义”人工智能相比，“符号主义”人工

智能强调信息的抽象和符号化处理，“连接主义”人

工智能则侧重模仿大脑中神经元连接机制构造视

听觉认知计算方法。作为行为主义人工智能的延

伸，具身智能更依赖于智能体在特定场景下的实际

操作和行为交互，强调智能体必须有能力与物理世

界进行直接互动，这不仅包括感知环境的能力，还

包括在该环境中进行物理操作的能力。例如，一个

具身智能的机器人能够感知周围的障碍物，并在物

理空间中绕过它们执行任务，而非仅仅在计算模型

中模拟这一行为[17]。情境性则指智能体的行为操

作离不开其所处的具体环境和上下文。这一行为

智能超出了简单的环境感知和认知层面，扩展到了

能够根据不同环境条件自适应调整智能体行为的

能力。这要求智能体不只是在静态的或高度控制

的环境中操作，而是能够在不断变化的真实世界情
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境中进行有效的决策和行动[18]。生成性描述了智

能体通过与环境的互动生成新知识和解决策略的

能力[19]。这种特性使具身智能在面对未知或未经

编程的情况时，能够创造性地适应和解决问题。智

能体通过实践和经验不断学习，从而能够在其知识

库之外独立生成解决方案。

大模型（large models，LMs）、自主无人系统

（UASs）以及人工智能内容生成技术（artificial intel⁃
ligence generated contents，AIGC）有望共同塑造全

新的具身认知智能架构（图 2）。通过“（大模型）心

智-（自主无人系统）身体-（人工智能生成）环境”

三者的结合，可为自主无人系统接入开源知识持续

学习和自适应环境变化的自主进化能力。大模型，

如GPT和 PaLM，通过处理大规模数据集学习语言

和认知世界模型及其规律，为自主无人系统提供了

类似人类“心智”的认知内核，使其能够自然地理解

人类语言及情绪，从而提高通信效率协同完成社会

交互和执行任务。自主无人系统硬件的快速发展，

则为这些“心智模型”提供了“执行载体”。当各种

类型的无人系统被装备以高级传感器和执行器时，

它们不仅能实时收集环境数据，为其“心智/决策系

统”提供实时环境输入；还能通过接入大模型增强

对环境态势的分析和理解能力，以自然语言交互通

信的方式高效协调及组织执行复杂的物理任务[20]。

人工智能内容生成技术则为自主无人系统的“心

智”与“身体”协同认知能力提供了一个丰富的数字

化“虚拟训练场”[21]，使自主无人系统可以在虚拟场

景中进行从未在物理环境中经历过的复杂社会交

互和任务模拟训练。人工智能内容生成技术和工

具不仅为自主无人系统提供了一个包含无限任务

的虚拟训练测试场，还允许人类与机器人以自然语

言的方式进行交互，从而在保持物理安全的同时测

试并提升自主无人系统的环境认知和具身执行能

力[22]。因此，本文提出集成大模型-自主无人系统-
人工智能生成内容的“计算-控制-测试”具身认知

智能框架，形成自主无人系统的“算-控-测”具身

循环认知过程（图 2）。这一架构不仅将加强自主

无人系统对未知变化环境的特征学习和适应能力，

还能够通过在虚拟训练场中的任务训练来扩展它

们对物理世界的认知边界，使自主无人系统能够更

好地理解和响应复杂的环境和任务要求。同已有

智能框架相比，本文提出的具身认知智能框架着重

面向自主无人系统在跨域协同任务上面临诸多挑

战，通过融合大模型和人工智能生成技术，提高自

主无人系统的跨域协同任务质量与效率，提升系统

安全性能。

自主无人系统通过融合社会-物理-信息域的

各种传感器数据集成大模型，使自身具备感知物理

环境和社会交互变化的能力，并结合自身任务需求

对环境变化做出响应，即自适应地执行特定任务/
行为[23-24]。在实际应用中，具身智能与大模型、自

主无人系统技术的结合正在极大地释放机器的巨

大生产与劳动潜力。例如，谷歌的 PaLM-E大模

型，集成了参数量 540 B的 PaLM和参数量 22 B的

视觉 Transformer（ViT），融合文本和来自机器人本

身装载传感器的多模态数据，包括图像、机器人状

态和工作场景数据等，使得机器人不仅能理解周围

环境的具体布局，还能根据实时变化的人类需求和

物理障碍进行自我调整，进而使机器能够灵活执行

拣选和搬运任务[25]。随着通用人工智能技术的进

一步发展，具身智能将推动自主无人系统更好地适

应人类的工作和生活环境，成为新型劳动者，实现

图2 自主无人系统具身循环认知流程
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与人类劳动力的协同工作。这一发展趋势将重塑

社会、经济、产业等多方面的生产力生态。

2 自主无人系统跨域协同任务挑战

在科技强国战略的推动下，自主无人系统智能

化和网联化趋势明显且应用愈加广泛，跨“空-天-
地-海”域协同作业成为自主无人系统常态任务。

以俄乌冲突为例，双方投入了大量的新型空-海-
地自主无人设备，跨域协同执行复杂军事任务，极

大地降低了人员损伤并缩短了军事决策链的时间

周期。战争一开始，乌克兰率先使用了无人机来执

行战场侦察和监视、实时情报收集、双方战力评估、

炮兵火力引导等，进行近程到远程的火力打击；

2022年 10月，俄乌之间发生了首次无人艇作战，乌

军使用 7艘无人艇和9架无人机突袭塞瓦斯托波尔

港，攻击了俄军驻守在塞瓦斯托波尔港的俄罗斯黑

海舰队；俄罗斯则在此次战争中首次出动了自研的

“标记”无人战车，可执行反装甲作战等在内的多种

地面作战任务。然而，目前自主无人系统协同任务

以空-海、空-地协同为主，跨多域协同作战能力依

旧有待提升。

自主无人系统在执行跨多域协同任务时，面临

一系列严峻挑战。首先，全空间跨域自主无人系统

往往规模庞大且高度异构，涉及多种不同类型的机

器人和设备，每种设备都有其独特的运行机制和操

作规范。这种异构性导致系统内多种运行规律的

并存与交互，使整个系统的行为预测和控制复杂

化。此外，这些系统常包含众多的参数和变量，这

些参数之间普遍存在强耦合和非线性关系，加之环

境的不确定性和多层次的决策需求，为这类系统建

立一个通用的数学模型变得异常困难。同时，系统

传感设备故障多发导致获取数据不连续，或是难以

通过传统方法检测数据质量，增加了系统操作的不

确定性和风险。在实际操作中，这种复杂性往往表

现为对环境适应性和决策的高要求，因为系统需要

在持续变化的甚至是恶劣的环境条件下保持高效

运行。这些挑战也是目前限制自主无人系统应用

发展的技术瓶颈。

协同感知是多源异构自主无人系统跨域协同

任务的基础。恶劣环境条件常常导致设备感知不

稳定、数据及其模态缺失等问题，即在某些情况下，

必要的感知信息（如视觉或声音数据）可能因为阻

挡、遮蔽或其他环境因素而不完整或完全缺失。例

如，在浓雾或烟雾中，视觉传感器的效能大打折扣，

导致视觉信息的可用性急剧下降。其次，环境的动

态变化，如季节更替、天气变化或场景中其他动态

因素动力学变化也会导致感知数据的模态关联性

发生变化。例如，在夏天进行的编组任务可能需要

处理与冬天完全不同的光照和温度条件，这些变化

可能影响感知设备的稳定性及其对作业环境的认

知和数据处理效率。强烈的环境噪声也是一个重

要问题。在有噪声的环境中，例如在高风速或机械

振动的情况下，传感器收集的数据可能会受到干

扰，影响数据的准确性和可靠性。这种情况在协同

作业中尤为严重，因为不同设备或机器人可能依赖

彼此的感知数据来进行精确的位置定位和任务协

调。这些挑战要求跨域协同感知需要具备高度的

适应性和鲁棒性，以确保自主无人系统即使在极端

或不利条件下也能保持高效和精确的操作性能。

跨域组网通信是自主无人系统有效协同作业

的关键，但在复杂强干扰的环境中工作性能表现有

待提高。特别是，目前大量无人装备系统以远程操

控为主要方式，这就对组网通信提出了更高的要

求。然而，军事作战地区往往处于强干扰环境，对

通信链路的稳定性产生极大影响。在如山区、沙

漠、城市建筑密集区或干扰多的工业环境，通信设

备需要适应极端的温度变化、物理阻碍、电磁干扰

等问题，以保持稳定的数据传输。其次，传播介质

的物理特性极大影响信号的传输距离和信息的可

靠性。例如，在厚重的墙壁或金属结构的干扰下，

无线信号易发生衰减，导致通信范围和效率降低。

水下或地下环境中的通信问题更为复杂，传统的无

线电通信方式难以适用，需要使用声波或其他特殊

技术以适应介质对信号传播特性的限制。此外，通

信系统还需要应对不同通信标准和协议的兼容问

题。在跨域协同的环境中，各种设备可能使用不同

的通信技术和协议，这要求系统能够实现高效的互
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操作性和数据整合，以确保协同操作的顺畅。随着

任务复杂性的增加，通信系统的带宽和数据处理能

力需求也随之提高。大量数据的实时传输和处理，

尤其是在使用高分辨率传感器和执行复杂决策算

法的情况下，对通信带宽和延迟都提出了更高的要

求。而目前各子系统之间复杂的耦合关系及相互

影响未知且不可量化，对自主无人系统跨域协同作

业带来巨大挑战。

资源高效调度、任务可靠分配以及冲突消解是

自主无人系统跨域协同任务的难点。首先，系统内

部的多型异构感知单元对资源的利用率提出了巨

大挑战。不同类型的感知单元——如雷达、激光扫

描仪、摄像头等——对处理能力、电力和带宽的需

求各不相同。在资源有限的环境中，如何优化这些

异构单元的资源分配确保每个单元都能有效运行

而不互相干扰是关键所在[26]。在大规模协同操作

中，任务必须迅速而准确地分配给适合的单元执

行，任何延迟都可能导致整体操作效率的下降。这

要求系统不仅要有高效的任务调度算法，还需要有

能力处理大量信息并快速作出决策。任务的复杂

度对调度系统的结果最优性提出了挑战。在多任

务和多目标的操作环境中，如何确保分配的结果既

满足各项任务的特定需求，又能达到整体的最优或

近似最优，是一个高度复杂的问题。这包括如何平

衡短期目标与长期目标的优先级，如何在紧急任务

与常规任务之间调整资源，以及如何在系统内部进

行有效的负载均衡。此外，冲突消解也是资源调度

和任务分配中不可忽视的一个方面。在多个任务

或单元之间可能会发生资源竞争或目标冲突，如同

一时间段内多个无人机竞争同一通信频道或同一

地点的空域。有效的冲突消解策略需要实时识别

这些潜在的冲突，并能够提出解决方案，以避免任

务执行中的干扰和效率损失。

在多型异构自主无人系统的协同任务中，如何

有效组合并集成各种感知信息以做出高效决策至

关重要。首先，各种感知设备如视觉传感器、雷达、

红外传感器等来源众多，各自捕获的数据类型和格

式差异大，如何从这些大量且多样的数据中提取对

决策有用的信息，量化其效用，并评估其效果是实

现有效协同任务的基础。这不仅要求高效的数据

处理算法，还需要复杂的数据融合技术，以确保决

策过程中的信息完整性和时效性。在实际应用中，

由于通信中断、感知设备的局限性或外部环境的影

响，收集到的数据可能出现时间上的间断或信息上

的不完整，时序不连续性和碎片化问题进一步增加

了协同决策的难度。决策者需要在不完整或间断

的数据流基础上做出判断，增加了计算和分析的负

担。同时，异构系统中不同单元可能采用不同的决

策逻辑和处理算法，使决策的维度变得更加复杂。

这需要高度优化的协同决策框架和算法，以适应各

种不同类型和能力的系统单元。总结来说，多型异

构自主无人系统的协同决策面临的挑战是多方面

的，涉及数据处理、信息整合以及决策制定的复杂

性。解决这些问题不仅需要先进的技术和算法，还

依赖于系统设计的整体优化，确保在复杂多变的环

境中做出快速而准确的决策。

3 自主无人系统跨域协同具身认知

智能框架

人类通过对未知事物的探索来拓展自身认知

的边界，其认知事物的能力受到自身经验知识、记

忆和计算能力的限制。在有限理性约束下，人通过

不断地试错、适当地容错和及时地纠错优化个体的

行为决策，在特定工作空间内开展组织、协调或执

行动作实现期望目标。作为行为主义人工智能的

延伸，具身智能的研究目标是让机器能像人一样认

知和行动[27]。在“算-控-测”协同具身认知智能的

框架中，任何一个可自主行动的智能主体，都至少

由认知决策载体（心智）和动作执行载体（身体）两

部分构成，并且在特定作业空间（环境）执行任务。

近年来，随着生成式人工智能技术的快速发

展，各式各样的大模型工具如雨后春笋般问世并引

发了全球前沿科技企业以及学术科研机构的普遍

关注[28-29]。一方面，大模型为无人系统赋予了强大

的单机决策能力，其本身具备的自然交互能力使无

人系统内部成员之间可通过“对话式群聊”方式传

递信息、协调资源和分享策略，更高效地协同执行
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任务[30]；另一方面，无人系统自身装载的多源传感

器采集的数据为大模型认知环境及执行任务构建

了决策依据，为实时数据驱动的无人系统行为控制

奠定了基础。

人工智能内容生成技术为自主无人系统的具

身认知智能实现提供了充分的“训练数据”，使系统

可以较低的成本探索认知的边界，并且允许系统在

不受现实世界物理限制和风险的情况下优化自身

行为表现。在虚拟测试环境中，自主无人系统的训

练任务可通过一组语义定义进行描述，每个语义实

体可通过在任务语义空间进行搜索、组合等操作创

造新任务，而对语义对象数量、类型以及状态等属

性的排列组合将使得所涉及的语义对象可在特定

语义空间（由AIGC定向生成数据组成的虚拟环境）

创造所有可能的训练任务，进而预先对语义对象

（无人系统）进行训练，使其达到现实物理空间任务

执行的能力水平[31]。这种设置使自主无人系统能

够在模拟环境中“经历”和“学习”多种情境、累积经

验，并结合自身装载硬件来探索感知精度、算力资

源、通信组网以及执行任务的限制，进而降低物理

实验的成本，同时能够将这些通过生成式内容训练

学习到的知识和规则限制应用到现实世界中的具

体任务。

因此，本文提出集成“大模型+自主无人系统+
人工智能内容生成技术”为一体的“算-控-测”具

身认知智能框架（图 3）。该架构旨在充分利用大

规模机器学习和预训练模型的强大数据处理能力

和自然语言交互能力[32-34]，无人系统机械身体的行

为操作能力，以及人工智能生成的情景式任务内容

能力，实现具备自适应复杂环境变化、可验证能力

边界及失效情况、可量化评估任务完成情形的自主

无人系统协同智能。在这一架构中，大模型不仅作

为协同认知智能的“计算大脑”，处理复杂的组织、

协调和决策任务，还能通过持续试错和学习优化其

认知模式。机械身体则直接与物理世界互动，通过

具身式执行具体任务如搬运、检修或导航等，验证

在人工智能生成内容上测试的策略是否能达到预

期效果。

特别是，针对人工智能生成内容可能违背真实

世界基本规律，从而造成具身智能系统的不安全、

不稳定以及时间、资源浪费等问题，该架构通过人

在回路的方式构建自主无人系统的人机混合智能，

引入人类专家知识和经验，使其具备分辨虚实、鉴

别真伪以及反事实思维的能力。首先，在实际任务

执行过程中，分辨虚实的能力是对自主无人系统的

基本要求，这是由于这一框架下的自主无人系统需

图3 自主无人系统的“算-控-测”具身认知智能框架
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要在人工智能生成的虚拟内容和物理世界感知的

真实环境之间无缝切换。这种能力使系统能够正

确解释和响应虚拟训练环境中的模拟数据，同时也

能在真实世界中有效应用学习到的技能和策略。

其次，鉴别真伪的能力是保障自主无人系统信息交

互传递、运行安全可靠的基础。系统不仅需要处理

不同来源的信息，还必须能够评估这些信息的可靠

性和真实性。在实际应用中，无人系统可能会遭遇

各种网络攻击，受误导信息或故障传感器产生的错

误数据的影响。只有能够鉴别信息真伪的系统，才

能避免被错误信息误导，确保决策的准确性。最

后，反事实思维的能力允许无人系统在面对决策时

考虑各种可能的替代方案和情景，这是高级认知功

能的表现。例如，在决策过程中，系统可以通过大

模型集成多源数据推理计算不同决策选择所可能

带来的后果、量化评估决策效果和潜在损失，从而

在符合实际物理场景和资源限制的条件下做出最

优决策。这些能力不仅提高了系统的操作安全性

和有效性，也确保了系统能够在复杂多变的真实世

界和严格控制的虚拟环境中稳定可靠的工作。

4 结论

探讨了复杂动态时变环境中自主无人系统协

同任务面临的巨大挑战，基于对行为主义人工智能

的研究和认识，提出集成“大模型+自主无人系统+
人工智能生成内容”为一体的“算-控-测”具身认

知智能框架。这一架构不仅可优化系统的实时交

互、协同决策和自主执行能力，还将极大增强其对

环境和任务变化的适应性。通过在定向生成的内

容（图片、语音、视频等）上进行复杂任务的模拟和

训练，系统能够在没有物理损伤风险的情况下测试

和完善其策略，这种实践是提升系统行为操作精度

和效率的关键。未来，这一技术组合有望推动自主

无人系统向更普适的通用智能机器方向发展。随

着技术的进一步成熟和应用的扩展，可预见这一框

架将在更多产业领域显示出前所未有的灵活性和

效能，如自动化驾驶、远程医疗、灾难响应和智能制

造等。此外，这一集成化的体系架构能够更好地理

解和响应复杂多变的人类需求和环境挑战，从而在

提高操作安全性和效率的同时，实现更加个性化的

服务和交互。这一框架不仅是体系创新的展示，还

标志着人工智能与自主无人系统技术的组合拳在

提升产业效率、生成新质生产力方面将释放巨大的

潜力，不仅将深刻改变科技创新的方式，更将在社

会、经济和文化层面产生深远的影响，使未来的自

主无人系统能够以更预备化、人性化、智能化的方

式服务于人类社会发展和国家安全稳定。
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Embodied cognitive intelligence framework of unmanned

autonomous systems

AbstractAbstract Unmanned autonomous systems (UASs) are intelligent systems endowed with autonomous cognition, motion planning,
autonomous decision making and reasoning capabilities. Their goals are designed to perform and complete common tasks in
complex, open and dynamic scenarios with limited or even no human participation. In terms of the challenges UASs faced in
cross-domain collaborative tasks, such as low efficiency of collaborative perception, poor reliability of Ad Hoc network
communication, slow resource scheduling, and conflict-prone task allocation, this paper explored how to combine large models
and generative artificial intelligence (GAI) technology to construct the“compute-control-test”embodied cognitive intelligence
framework of UASs integrating“large model + autonomous unmanned systems + artificial intelligence generated content(AIGC)”.
It will provide valuable reference for advancing the technological implementation and practical deployment of UASs with
embodied cognitive intelligence.
KeywordsKeywords unmanned autonomous systems (UASs); embodied intelligence; foundation models; generative artificial intelligence;
general intelligent machines ●
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